
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Porting NEXTSTEP 3.2/3.3 Applications to
OpenStep on Solaris

Part No: 802-2115-10
Revision A, September 1996

A Sun Microsystems, Inc. Business

Please
Recycle

 1996 Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

Portions Copyright 1995 NeXT Computer, Inc. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party font
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers. This product
incorporates technology licensed from Object Design, Inc.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, and OpenWindows are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of
Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. Object Design is a trademark and the Object
Design logo is a registered trademark of Object Design, Inc. OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo,
Application Kit, Foundation Kit, Project Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Unicode is a
trademark of Unicode, Inc. VT100 is a trademark of Digital Equipment Corporation. All other product names mentioned herein
are the trademarks of their respective owners.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC-11, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and SunTM Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Table of Contents

Preface. vii

1. Introduction to OpenStep . 1

Components of OpenStep . 1

OpenStep and CORBA . 2

2. Managing Interface Differences. 5

Interface Changes in OpenStep . 6

Application Kit. 6

Foundation Kit . 7

Display PostScript Kit . 7

Distributed Objects System . 7

Objective C Run-Time System . 8

Unsupported NEXTSTEP Interfaces . 8

3. Resolving Operating System Differences. 9

Supporting Virtual Memory . 9

Accommodating Tasks . 11

iv Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

Managing Threads . 12

Providing Interprocess Communication 15

Handling Exceptions . 17

4. Handling Environment, Compiler, and Language Differences 19

Environment Changes . 19

Compiler Differences. 20

Invoking the C++ Compiler . 20

Specifying Include Files and Libraries 20

Handling Preprocessor Variables. 21

Language Variants . 22

Adjusting for Type Checking . 22

Handling Use of Reserved Words . 23

Creating Prototypes for C++ Functions 24

Managing Syntax Differences. 24

Handling Structures Defined Inside a Cast 25

Replacing Unsupported GNU Extension 25

Accommodating Dynamically Allocated Arrays. 26

5. Supporting Internationalization of Your Application 27

Specifying a Locale . 27

Creating Locale Directories. 28

Displaying Internationalized Messages 28

6. Performing the Porting Process . 31

Translating Your Project and Make Files. 31

Converting Mach-Specific Features to Solaris 32

Table of Contents v

Converting Objective C to Objective C++. 32

Converting the NEXTSTEP Interface to OpenStep 32

Working with Conversion Tools. 35

The cvtCC Conversion Tool . 35

The cvtmake Conversion Tool . 37

The cvtstand Conversion Tool . 37

The cvtextract Conversion Tool . 38

The cvtquery Conversion Tool . 38

The cvtre Conversion Tool . 38

Using the Emacs Editor . 39

7. Porting a Simple Application . 43

Converting Project Files . 43

Converting Header Files . 44

Converting Source Files . 47

Compiling Your Project . 52

Ported Source Code . 53

vi Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

vii

Preface

Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris describes porting-
related information, conversion processes, and tools you need to port your
NEXTSTEP™ Release 3.2 and Release 3.3 applications to OpenStep™ on the
Solaris™ operating system.

The reference information in this white paper complements information
presented in the SunSoft™ training course, “Porting NEXTSTEP Applications.”
For course registration information, contact SunSoft at (800) SUNSOFT to
locate an Authorized Education Center (AEC) offering this class near you.

Who Should Use This Paper
This paper is intended for developers who are already familiar with
developing NEXTSTEP applications. You can use this paper to help you
understand environment differences between NEXTSTEP and OpenStep. It
also provides a tutorial to help you understand and perform the porting
process.

viii Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

Before You Read This Paper
Before you begin this paper, you should already

• Be proficient in Objective C and object-oriented programming.
• Be familiar with NEXTSTEP.
• Be familiar with UNIX.
• Know how to use tools such as compilers and debuggers.

An overview of OpenStep is provided in Chapter 1.

How This Paper Is Organized
This paper, Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris,
discusses these topics:

Chapter 1, “Introduction to OpenStep,” is an overview of OpenStep—its
components and relationship to CORBA (Common Object Request Broker
Architecture).

Chapter 2, “Managing Interface Differences,” explains interface differences
between NEXTSTEP and OpenStep.

Chapter 3, “Resolving Operating System Differences,” describes operating
system differences between NEXTSTEP Release 3.2/3.3 applications on the
Mach operating system and OpenStep on the Solaris operating system.

Chapter 4, “Handling Environment, Compiler, and Language Differences,”
discusses how to handle environment, compiler, and language differences
when porting your NEXTSTEP application to OpenStep.

Chapter 5, “Supporting Internationalization of Your Application,” explains
how to modify your NEXTSTEP application to support the features of
OpenStep internationalization.

Chapter 6, “Performing the Porting Process,” summarizes NEXTSTEP to
OpenStep porting processes and describes the OpenStep tools you use to
accomplish these processes.

Chapter 7, “Porting a Simple Application,” illustrates the NEXTSTEP to
OpenStep porting process on a simple calculator application.

Preface ix

Related Information
For general information on porting to Solaris, refer to the manual, Solaris
Porting Guide. The book is written by SunSoft ISV Engineering, Michele Ann
Goodman, Manoj Goyal, and Robert A. Massoudi. It is published by SunSoft
Press and PTR Prentice Hall. This book is available at local bookstores, or can
be ordered directly from Prentice Hall by calling (201) 592-2863. Its ISBN is
0-13-030396-8.

If you have the OpenStep product, you can find on-line troubleshooting hints
related to the porting process in
/usr/openstep/Developer/ConversionTools/cvtnotes.doc.

x Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

1

Introduction to OpenStep 1

The OpenStep application environment provides a user interface that includes
desktop applications and services, and a development environment that
enables you to rapidly prototype, develop, and deploy enterprise applications.

The specification for OpenStep was developed by NeXT Computer and Sun.
OpenStep is based on the NEXTSTEP Release 3.2 development environment
created by NeXT Computer.

This chapter describes the components and positioning of OpenStep.

Components of OpenStep
OpenStep is expected to meet the needs of fortune 1000 companies that require
vertical market or “mission critical” distributed applications. The ability to
develop custom applications enables corporations to meet specific business
goals. For example, many financial services companies compete by using
market data that is coupled with their own data and analysis algorithms.
OpenStep enables companies to quickly develop and enhance custom
applications to remain competitive in a fast-moving industry.

On the desktop, OpenStep provides end-users with a collection of productivity
applications such as electronic mail, a word processor, and a terminal emulator.
These applications maintain a common appearance and behavior—they also
interoperate and coexist with other desktop applications created with CDE
(Common Desktop Environment) and SunSoft’s OpenWindows™.

2 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

1

OpenStep supports an application programming interface (API) and several
application services such as spell checking and printing that make it easier for
you to design full-featured applications. OpenStep interfaces are primarily an
enhanced superset of NEXTSTEP interfaces, although a few NEXTSTEP
interfaces are no longer supported.

In addition, OpenStep provides you with an environment for rapid application
development that includes an interface and project builder, a compilation suite,
team-oriented source code control, and a visual debugger.

OpenStep and CORBA
OpenStep is designed to complement OMG (Object Management Group)
CORBA (Common Object Request Broker Architecture) technologies and
database information systems. Together, these components comprise a three-
tier client server architecture. Figure 1-1 shows the relationship of OpenStep to
these components.

Figure 1-1 Position of OpenStep in the Three-Tier Architecture

ORB

OpenStep

Business Object
CORBA

Database Database Database

Business Object
CORBA

Business Object
CORBA

Other environment

Introduction to OpenStep 3

1

The top tier consists of a data repository (the model data), the second tier
supports your business logic (a controller for the data), and the third tier is
your application presentation (a view of the data).

For example, the CORBA layer handles the workflow of the business
process—it contains business service objects that can respond to queries such
as a request for the number of products purchased by a specific region’s
customers. A CORBA business object can access several local or remote
databases to answer a query. Multiple application environments, including
OpenStep, can utilize the information provided by a business object.

The rest of this paper describes how to begin using the features of the
OpenStep application environment by porting your existing NEXTSTEP
3.2/3.3 applications to OpenStep.

4 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

1

5

Managing Interface Differences 2

The OpenStep programming interface is derived from
NEXTSTEP Release 3.2/3.3. From a user’s point of view, OpenStep is virtually
identical to NEXTSTEP—from a developer’s point of view, the programming
environments are similar, but contain notable differences.

Differences between OpenStep and NEXTSTEP can be generally grouped into
three categories:

• NEXTSTEP interfaces that are modified for OpenStep

• NEXTSTEP interfaces that are not available in OpenStep

• OpenStep interfaces that have been created to provide additional
capabilities and enhancements

Information on OpenStep porting tools that you can use to convert NEXTSTEP
source code to OpenStep programming interfaces is described in Chapter 6,
“Performing the Porting Process” in this paper. Detailed OpenStep interface
information is provided in the manual, OpenStep Programming Reference.
Information on development tools, such as Interface Builder and Project
Builder, for creating OpenStep interfaces is described in the manual, OpenStep
Development Tools.

6 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

2

Interface Changes in OpenStep
OpenStep and NEXTSTEP Release 3.2/3.3 have several interfaces in common.
Most modifications made to OpenStep interfaces are intended as enhancements
to the original functionality provided in NEXTSTEP. For example, OpenStep
interfaces are operating-system independent.

Where appropriate, interface components such as Mach-specific run-time
functions are no longer supported. When necessary, naming conventions for
OpenStep methods are modified to ensure uniformity.

Table 2-1 summarizes modifications in the OpenStep application programming
interface (API) from its original component in NEXTSTEP Release 3.2/3.3.
Additional information is provided throughout the rest of this chapter.

Application Kit

The Application Kit defines the essential components, structure, and
functionality of a NEXTSTEP application. The objects it defines are used to:

• Manage event-handling, drawing, and printing

• Provide standard user-interface components such as windows, buttons, font
panels, and text objects

Table 2-1 Changes Between NEXTSTEP and OpenStep Interface Components

NEXTSTEP Release 3.2/3.3 Component OpenStep Component

Application Kit Minor API refinements and the removal of
obsolete classes.

Foundation Kit OpenStep Foundation Kit is an enhanced
superset of the NEXTSTEP 3.3 Foundation
Kit. The OpenStep Kit contains API
modifications and additions.

Display PostScript Kit As in NEXTSTEP 3.2, the OpenStep Display
PostScript kit extends the display
PostScript language by adding operators
for compositing and transparency.

Distributed Objects System Minor modifications and API refinement.

Objective C Run-Time System Removal of Mach-specific run-time
functions.

Managing Interface Differences 7

2

• Provide text-editing functionality with Text object, Spell-checker, and Font
panel

• Coordinate interapplication communication including cut and paste, drag
and drop, interapplication services, and object-linking capabilities

The OpenStep Application Kit is similar to the NEXTSTEP Application Kit
except for minor API refinements and the removal of obsolete classes, such as
Speaker, Listener, and NXJournaler.

Foundation Kit

The Foundation Kit provides classes to help make software development
easier. The objects it defines are used for accessing structured and stored data,
thread control, automatic deallocation, Unicode strings, object distribution, and
the program environment. Many of the data access and storage classes
available in NEXTSTEP 3.2 have equivalents in OpenStep’s Foundation Kit.

NEXTSTEP 3.3 supports a preliminary version of a Foundation Kit; release 3.2
does not support a Foundation Kit. The OpenStep Foundation Kit is an
enhanced superset of the NEXTSTEP Foundation Kit.

Display PostScript Kit

Adobe’s Display PostScript client library extends the PostScript language and
adapts it to accommodate the interactive requirements of the screen.

In its Display PostScript Kit, NEXTSTEP extends the Display PostScript
language by adding operators for window management, compositing, and
transparency. Similarly, OpenStep extends the client library with operators for
compositing and transparency. However, it does not include support for
window management operators—this functionality is supported by
OpenStep’s Window Manager.

Distributed Objects System

The Distributed Objects System enables interapplication communication using
the same Objective C messaging that is used by an individual application. This
messaging system can also be used between remote applications on a network.

8 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

2

The OpenStep Distributed Objects System is similar to the NEXTSTEP
Distributed Objects system except for minor API refinements. You should note
that the OpenStep version of the system is wire compatible with the NeXT
version.

Objective C Run-Time System

The Objective C Run-Time System provides operating system functionality for
the Objective C language. These run-time functions implement the language’s
messaging system and allow dynamic loading and archiving of objects.

The OpenStep Run-Time System is identical to the NEXTSTEP version of the
system excluding the Mach-specific run-time functions which are unsupported.

Unsupported NEXTSTEP Interfaces
OpenStep does not support all of the software kits and libraries that are
supported in the NEXTSTEP 3.2 and 3.3 releases. You should avoid using these
additional libraries to ensure that your application is OpenStep compliant and
portable across future versions of the OpenStep product.

The software kits and libraries that are unsupported in OpenStep include:

• Indexing Kit
• DB Kit
• Mach Kit
• MIDI Driver API
• NetInfo Kit
• Novell NetWare networking
• Sound Kit
• 3D Graphics Kit

Note – OpenStep does provide support for the DBTableView class that was
originally part of the NEXTSTEP DB Kit as well as a subset of the NEXTSTEP
Sound Kit. Refer to the OpenStep Programming Reference for detailed interface
information.

9

ResolvingOperating System
Differences 3

To port your application from NEXTSTEP to OpenStep, you need to resolve
differences in operating systems for which these environments are designed.
Existing NEXTSTEP Release 3.2/3.3 applications run on the Mach operating
system which is compatible with UNIX 4.3 BSD™. OpenStep runs on the Solaris
operating system which is an SVR4 UNIX™ implementation.

For information on converting 4.3 BSD compatible programming interfaces in
Mach to SVR4 UNIX interfaces in Solaris, see the manual, Solaris Porting Guide.

This chapter describes how to convert pure Mach operating system and library
calls to Solaris. Specifically, it identifies important differences between the
Mach and Solaris operating systems and provides recommendations for
handling them.

Note – Operating system porting issues do not apply if your NEXTSTEP
application does not contain any Mach operating system functions.

Supporting Virtual Memory
Mach operating system virtual memory facilities provide applications with
direct access to pages or objects of virtual memory. An application can allocate,
deallocate, and protect these pages. Unlike memory allocated with the UNIX
malloc function, Mach enables allocation to occur anywhere in the address
space of a Mach task. (A task is roughly equivalent to a UNIX process.)

10 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

3

Solaris provides applications with access to virtual memory objects with the
mmap(2) system function. This function establishes a mapping between the
address space of a process and a virtual memory object.

Both Mach and Solaris allow applications to specify access to virtual memory,
to indicate if it is to be shared, and to define how pages are protected. Your
application is easier to port to OpenStep if you’ve adhered to a basic
implementation of virtual memory allocation, deallocation, and protection.

Mach provides a map_fd function that maps a file to virtual memory. To
achieve similar functionality in Solaris, you can use the mmap(2) function. The
most portable way to provide this functionality is through the
NSPosixFileDescriptor class that is part of the OpenStep Foundation Kit.

For detailed information on the NSPosixFileDescriptor class and the
OpenStep Foundation Kit, see the manual, OpenStep Programming Reference.

The most efficient way to make your application's memory usage portable is to
use the OpenStep Foundation Kit’s zone-based interfaces. Specifically, you
should use the NSZone functions which provide interfaces for memory
allocation, deallocation, and duplication. The zones returned by these
functions are understood and used by other OpenStep interfaces.

Table 3-1 lists the Mach virtual memory functions and their corresponding
functions in Solaris.

Table 3-1 Mach Virtual Memory Functions and Solaris Equivalents

Mach Function Description Solaris Function

vm_allocate() Allocates virtual memory mmap(2)

vm_deallocate() Deallocates virtual memory munmap(2)

vm_protect() Specifies protection on a range of virtual
memory pages

mmap(2),
mprotect(2)

vm_inherit() Specifies inheritance characteristics of
virtual memory

Not applicable

vm_read() Reads virtual memory of a specified task proc(4)

vm_write() Writes virtual memory of a specified task proc(4)

vm_copy() Copies virtual memory of a specified task Not applicable

Resolving Operating System Differences 11

3

Caution – Using the Mach vm_protect function for memory protections or
using the Mach vm_set_policy function to affect the kernel’s treatment of
memory may make porting your application to OpenStep difficult.

Accommodating Tasks
In the Mach operating system, an executing program consists of at least one
task and some number of threads. This program maintains a clear distinction
between a task and its threads. The task contains resources associated with the
program but is not an executing entity. Mach threads are the entities associated
with execution. In Solaris, a UNIX process contains resources and executes
using a lightweight process (LWP).

Most Mach task functions have no direct equivalents in Solaris. When porting
your application to OpenStep, you should use Solaris task-related mechanisms.
The Mach task functions you should avoid when porting to OpenStep include:

• task_assign()
• task_assign_default()
• task_by_unix_pid()
• task_create()
• task_get_assignment()
• task_get_special_port()
• task_set_special_port()
• task_self()
• task_notify()
• task_get_notify_port()
• task_set_notify_port()
• task_get_exception_port()
• task_set_exception_port()

vm_region() Returns description of characteristics of a
range of virtual memory

proc(4)

vm_set_policy() Specifies paging policy for a region of
virtual memory

madvise(3)

vm_statistics() Examines virtual memory statistics Not applicable

Table 3-1 Mach Virtual Memory Functions and Solaris Equivalents (Continued)

Mach Function Description Solaris Function

!

12 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

3

• task_get_bootstrap_port()
• task_set_bootstrap_port()
• task_info()
• task_priority()
• task_resume()
• task_suspend()
• task_terminate()

Managing Threads
The Mach operating system provides two programmatic interfaces to its
threads—a lower-level interface to Mach kernel threads and a higher-level
interface called C-threads. The C-threads interface is an easily ported user-level
library. The Solaris threads library provides sophisticated constructs to
manipulate threads that closely correspond to the C-threads library.

The most efficient way to provide your applications with thread and
synchronization abstractions is to use the interface for the OpenStep
Foundation Kit. Specifically, the NSThread and NSLock classes provide
interfaces to the Solaris threading facilities.The NSThread object creates a new
thread of control within your application, and the NSLock object performs
standard synchronization primitives necessary for running multithreaded
applications.

The low-level Mach thread functions you should avoid when porting to
OpenStep include:

• thread_abort()
• thread_assign()
• thread_assign_default()
• thread_create()
• thread_get_assignment()
• thread_get_special_port()
• thread_set_special_port()
• thread_self()
• thread_reply()
• thread_get_reply_port()
• thread_set_reply_port()
• thread_get_exception_port()
• thread_set_exception_port()
• thread_get_state()

Resolving Operating System Differences 13

3

• thread_set_state()
• thread_info()
• thread_policy()
• thread_priority()
• thread_max_priority()
• thread_resume()
• thread_suspend()
• thread_switch()
• thread_terminate()

Note – If your application requires sophisticated threading mechanisms, you
might prefer to use the Solaris thr_self function which corresponds to the
Mach thread_self function.

Table 3-2 lists the Mach C-threads interfaces and the corresponding Solaris
threads library functions.

Table 3-2 Mach C-Threads and Solaris Equivalents

Mach C-Threads Function Description Solaris Function

condition_alloc() Allocate condition variable Not applicable

condition_broadcast() Broadcast a condition cond_broadcast()

condition_clear() Clear a condition cond_destroy()

condition_init() Initialize a condition cond_init()

condition_free() Free condition variable Not applicable

condition_name() Get name of a name Not applicable

condition_set_name() Set name of a condition Not applicable

condition_signal() Signal a condition cond_signal()

condition_wait() Wait on a condition cond_wait()
cond_timedwait()

cthread_abort() Interrupt a thread thr_kill()

cthread_count() Get number of threads in this
task

Not applicable

cthread_data() Get thread-specific data thr_getspecific()

cthread_set_data() Set thread-specific data thr_keycreate()
thr_setspecific()

14 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

3

cthread_detach() Detach a thread thr_create()

cthread_errno() Get errno for current thread errno variable is valid for
each thread

cthread_exit() Exit a thread thr_exit()

cthread_fork() Fork a new thread thr_create()

cthread_join() Join threads thr_join()

cthread_limit() Get maximum number of
threads in this task

thr_getconcurrency()

cthread_set_limit() Set maximum number of
threads in this task

thr_setconcurrency()

cthread_name() Get the name of this thread Not applicable

cthread_set_name() Set the name of this thread Not applicable

cthread_priority() Set base priority of this thread thr_setprio()

cthread_max_priority() Set maximum priority of this
thread

Not applicable

cthread_self() Return callers thread
identifier

thr_self()

cthread_set_errno_self() Set errno for current thread errno

cthread_thread() Return Mach thread identifier
for this thread

thr_self()

cthread_yield() Yield to another thread thr_yield()

mutex_alloc() Allocate a mutex variable Not applicable

mutex_clear() Clear a mutex variable mutex_destroy()

mutex_free() Free memory associated with
a mutex variable

Not applicable

mutex_init() Initialize mutex variable mutex_init()

mutex_lock() Lock a mutex mutex_lock()

mutex_name() Get the name of a mutex Not applicable

Table 3-2 Mach C-Threads and Solaris Equivalents (Continued)

Mach C-Threads Function Description Solaris Function

Resolving Operating System Differences 15

3

In addition to these thread-related functions, Solaris provides you with
functions for implementing semaphores in threads and functions for
implementing multiple read/single writer locks. These functions include:

• sema_init()
• sema_destroy()
• sema_wait()
• sema_trywait()
• sema_post()
• rwlock_init()
• rwlock_destroy()
• rw_rdlock()
• rw_wrlock()
• rw_unlock()
• rw_trydlock()
• rw_trywrlock()

Providing Interprocess Communication
Mach is a message-based operating system. All communication between two
tasks, or between a task and the kernel, occurs through Mach messaging. To
achieve messaging, Mach uses a port as a communication channel.

The Mach messaging interface for ports represents a network transparent form
of interprocess communication (IPC). You can convert Mach messaging in your
NEXTSTEP application to either native Solaris IPC mechanisms or to OpenStep
Distributed Object classes.

Basic IPC mechanisms in Solaris are pipes, named pipes, sockets, signals,
messages, semaphores, and shared memory. For distributed applications,
Solaris provides remote procedure call (RPC) facilities. Solaris currently
supports, RPC, transport-independent RPC, and the ToolTalk™ service for
standard messaging on the common desktop environment (CDE).

mutex_set_name() Set the name of a mutex Not applicable

mutex_try_lock() Try a mutex lock mutex_trylock()

mutex_unlock() Unlock a mutex mutex_unlock()

Table 3-2 Mach C-Threads and Solaris Equivalents (Continued)

Mach C-Threads Function Description Solaris Function

16 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

3

The most efficient way to provide your applications with an object-oriented,
network transparent message facility is to use Distributed Objects classes in
OpenStep’s Distributed Objects System. Specifically, you should use the
NSConnection , NSProxy , and NSDistantObject classes.

The Mach messaging interface for ports includes:

• port_allocate()
• port_deallocate()
• port_extract_receive()
• port_extract_send()
• port_insert_receive()
• port_insert_send()
• port_names()
• port_rename()
• port_set_add()
• port_set_allocate()
• port_set_backlog()
• port_set_backup()
• port_set_deallocate(
• port_set_remove()
• port_set_status()
• port_status()
• port_type()
• bootstrap_check_in()
• bootstrap_create_service()
• bootstrap_info()
• bootstrap_look_up()
• bootstrap_look_up_array()
• bootstrap_register()
• bootstrap_status()
• bootstrap_subset()
• netname_check_in()
• netname_check_out()
• netname_look_up()

Resolving Operating System Differences 17

3

Handling Exceptions
The Mach operating system supports a message-based model for exception
handling. Mach sends exceptions to a thread on an exception port. Solaris
exception handling is based on SVR4 signals. When porting to OpenStep, you
should use the OpenStep interface for exception handling provided by the
NSException class.

18 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

3

19

Handling Environment, Compiler,
and Language Differences 4

This chapter describes how to handle environment, compiler, and language
differences when porting your NEXTSTEP application to OpenStep.
Specifically, this chapter

• Describes basic environment changes.

• Outlines primary differences between the NeXT GNU-based Objective C
compiler and the Sun SPARCworks C++ compiler.

• Specifies variations between the NEXTSTEP usage of Objective C and the
OpenStep usage of Objective C++.

Environment Changes
To locate the OpenStep compiler, debugger, and utilities, set your standard
$PATH or $path variable to include the following in your .cshrc (or
equivalent) file:

/opt/SUNWspro/SC4.0/bin // Objective C++ compiler
 /opt/SUNWspro/SW3.1/bin // Debugger

/usr/ccs/bin // Language related utilities
// (yacc, lex, make)

20 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

4

Compiler Differences
When porting your application to OpenStep, you need to handle effects that
the C++ compiler has on your Objective C code. This section describes how to
invoke the C++ compiler to accommodate your Objective C code and to specify
include files and OpenStep libraries; it also provides a comparison of compiler
preprocessor variables.

Invoking the C++ Compiler

You invoke SunSoft’s SPARCworks C++ compiler as CC; as such, it is a C++
compiler. But when you invoke CC to compile a source file with a suffix of .m
or .M or with the -objc flag, it accepts Objective C syntax as well as C++
syntax. For example:

CC -c foo.m

CC -objc bar.C

To link a group of .o files, it is necessary to use the -objc flag to indicate to
the compiler that you are linking an Objective C program. For example:

CC foo.o bar.o -objc -o myprogram

Note – Although NeXT supports an Objective C++ compiler, this compiler is
not widely used at this time.

Specifying Include Files and Libraries

To compile Objective C programs using OpenStep programming interfaces
requires the following -I include path names:

CC -I/usr/openstep/include foo.m -c -mt
-I/usr/openwin/include -I/usr/openwin/include/X11

During linking, OpenStep requires the following options to create an Objective
C program:

CC -objc -mt foo.o bar.o -o myprogram
-L/usr/openstep/lib -R/usr/openstep/lib
-L/usr/openwin/lib-R/usr/openwin/lib
-lAppKit -ldps -lFoundation

Handling Environment, Compiler, and Language Differences 21

4

The -L and -R and the linker (ld) options indicate to the Solaris linker and
run-time loader the location of OpenStep libraries. These libraries include:
-lAppKit , -ldps , and -lFoundation .

These options are automatically inserted into Project Builder generated make
files.

Handling Preprocessor Variables

The NeXT compiler predefines a number of preprocessor variables. Table 4-1
provides a comparison of NeXT and Sun preprocessor variables.

Table 4-1 Correspondences Between NeXT and Sun Preprocessor Variables

NeXT Preprocessor Variable Sun Preprocessor Variable

-D__OBJC__ Same when compiling under Objective C

-Dsparc Same

-Dsun Same

-Dunix Same

-D__sparc Same

-D__sun Same

-D__unix Same

-D__sun__ uses __sun

-D__unix__ uses __unix

-D__sparc__ uses __sparc

-D__svr4__ uses __SVR4

-D__BIG_ENDIAN__ Add to make file

-DNeXT_PDO Not applicable

-D__NeXT_PDO Not applicable

-D__NeXT_PDO__ Not applicable

-DNX_COMPILER_RELEASE_3_0 Not applicable

-D__NX_COMPILER_RELEASE_3_0 Not applicable

-D__NX_COMPILER_RELEASE_3_0__ Not applicable

22 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

4

Language Variants
Objective C consists of a set of object-oriented language extensions on a base
language. In NEXTSTEP, the standard C language is used as the base language.
In OpenStep, C++ is used as the base language.

When porting your NEXTSTEP application to OpenStep, you should be aware
of the following C to C++ language-related issues:

• Stronger type conversion rules for assignments and initializations

• Use of C++ reserved words as identifiers such as class and new

• Necessity to declare prototypes for functions before they are used

• Differences between C++ and ANSI-C syntax for enumerations

• Handing structures that are declared inside a cast

• Unsupported GNU extensions such as the typeof operator and
dynamically allocated arrays

The rest of this section provides additional information on language
differences.

Adjusting for Type Checking

Unlike ANSI-C, C++ changes the semantics of (void *) such that values of
type (void *) may not be assigned to stronger typed pointers. When
compiling Objective C++ code, the SPARCworks C++ compiler treats this as a
warning rather than an error. Because this compiler feature may not be
supported in future releases, you should insert an appropriate cast.

In addition, you also need to resolve differences between formal and actual
arguments for a function call. For this, you must also insert the appropriate
cast.

-D__GNUC__=<some value> Not applicable

-D__GNUC_MINOR__=<some value> Not applicable

-D__GCC_NEW_VARARGS__ Not applicable

Table 4-1 Correspondences Between NeXT and Sun Preprocessor Variables (Continued)

NeXT Preprocessor Variable Sun Preprocessor Variable

Handling Environment, Compiler, and Language Differences 23

4

Compiler Diagnostic

"filename.m", line 2: Warning (Anachronism): Assigning
void* to objc_object*.

"filename.m", line 2: Note: Type "CC -migration" for more
on anachronisms.

Sample Code
id objects;
objects = malloc(count*sizeof(id)); // Warning
objects = (id)malloc(count*sizeof(id));// Corrected

Compiler Diagnostic

"filename.m", line 4: Warning (Anachronism): Formal
argument charString of type const unsigned char** in
call to function(const unsigned char**, unsigned,
unsigned short*) is being passed unsigned char**.

Sample Code
unsigned char *bufptr;
void function(const unsigned char **, int);
function(&bufptr, numChars);
function((const unsigned char **)&bufptr, numChars);

Handling Use of Reserved Words

Because Objective C uses C++ reserved words as identifiers, it is necessary for
you to rename these variables.

Compiler Diagnostic

"filename.m", line 2: Error: class may not be a type name.

24 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

4

Sample Code
+ allocWithZone:(NSZone *)zone {

Class class = self;//'class' is a reserved word.
Class cls = self;//Corrected
....

}

Creating Prototypes for C++ Functions

In C++, all functions must have prototypes before they are used.

Compiler Diagnostic

"filename.m", line 1: Error: The function access must have
a prototype.

Sample Code
access("foo", R_OK);

Managing Syntax Differences

C++ does not allow a comma after the last member of an enumeration
declaration.

Compiler Diagnostic

"filename.m", line 4: Warning (Anachronism): Identifier
expected instead of "}".

Sample Code
typedef enum {
 isLocal = 0,
 isRemote = 1,
 isOther = 2,
 isInvalid = 3,//Trailing ','
}

Handling Environment, Compiler, and Language Differences 25

4

Handling Structures Defined Inside a Cast

The NeXT Objective C compiler allows you to declare a structure inside a cast.
When porting to OpenStep, it is necessary for you to pull the type definition
outside of the cast and make it a global declaration.

Compiler Diagnostic

"filename.m", line 2: Error: Defining struct* within a cast
is illegal.

Sample Code
//Incorrect way
#define SELFPTR(X) ((struct
{@defs(NSConcreteMutableCharacterSet);} *)X)
...
otherBits = SELFPTR(otherSet)->bits;

//Correct way
typedef struct {

@defs(NSConcreteMutableCharacterSet);
} *NSConcreteMutableCharacterSet_p;
#define SELFPTR(X) ((NSConcreteMutableCharacterSet_p *)X)
...
otherBits = SELFPTR(otherSet)->bits;

Replacing Unsupported GNU Extension

The typeof operator is a GNU extension. It is not unsupported by the
SPARCworks C++ compiler. It is necessary for you to replace typeof with a
real type name.

Compiler Diagnostic

"filename.m", line 1: Error: Type name expected instead
of "(".

26 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

4

Sample Code
[coder encodeValueOfObjCType:@encode(typeof(int)) at:&low];

[coder encodeValueOfObjCType:@encode(int) at:&low]; //Corrected

Accommodating Dynamically Allocated Arrays

The NeXT Objective C compiler allows dynamically allocated arrays. To
achieve the same effect in SPARCWorks C++, use the alloc function.

Compiler Diagnostic

"filename.m", line 260: Error: An integer constant
expression is required within the array subscript
operator.

Sample Code
//Incorrect way
void foo(int formatLen) {
char formatChars[formatLen];
}

//Correct way
#import <alloca.h>
void foo(int formatLen) {
 char *formatChars;

formatChars = (char *)alloc(formatLen);
}

27

Supporting Internationalization of
Your Application 5

The purpose of software internationalization is to enable applications to easily
convert to and operate in multiple cultures or locales. A locale is typically
defined by a particular area or region, a language, and a character set. To
support the OpenStep international environment, you need to modify your
existing NEXTSTEP applications.

To reduce the cost of internationalization, OpenStep on the Solaris operating
system separates locale specific data from source code. This allows you to
accommodate several locales using a single binary which operates
appropriately in multiple locales.

This chapter describes how to modify your NEXTSTEP application to support
the features of OpenStep internationalization.

Specifying a Locale
To specify a particular locale, the Solaris operating system uses the
POSIX/ANSI C function setlocale . As in NEXTSTEP, OpenStep specifies a
locale in response to user input on a language choice in the Preferences
application. This language choice sets the NSLanguages user default.

When porting to OpenStep, you need to support the Solaris setlocale
function to access Solaris international libraries. You also need to make sure
that your application is internally synchronized with the NSLanguages user
default.

28 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

5

If your application is a subclass of NSApplication , locale specification is
handled by the initialization code of NSApplication . However, if your
application is not a subclass, you need to call the setlocale function.

Creating Locale Directories
NEXTSTEP specifies locale data in language-specific subdirectories as
<NameOfLanguage>.lproj . For example, locale data for the French language
is French.lproj .

When porting to OpenStep, you need to support Solaris language naming
conventions. For example, instead of French.lproj , your directory should be
fr.lproj . For detailed information on Solaris language names, refer to the
manual, Solaris International Developer’s Guide, Appendix A.

To support Solaris locale data, OpenStep requires you to create additional
language directories at the same level as your *.lproj directories. You specify
these directories as the names of the languages you support. For example, for
the French language, your directory should be fr in accordance with Solaris
language naming conventions. For a sample directory structure, see the next
section “Displaying Internationalized Messages.”

Displaying Internationalized Messages
To handle translated text, Solaris provides gettext functions. As in
NEXTSTEP, OpenStep provides functions for displaying internationalized
messages. These messages comprise user-visible text that can be translated into
various languages such as help text, menu items, and errors messages. Display
functions for these messages include NSLocalizedString ,
NSLocalizedStringFromTable , and
NSLocalizedStringFromTableInBundle .

For information on gettext functions, see the manual, Solaris International
Developer’s Guide. For detailed information on international message display
functions, see the manual, OpenStep Programming Reference.

OpenStep subsumes Solaris gettext functionality in its implementation so it
is not necessary for you to change the international message code that you
port. The primary difference between OpenStep and NEXTSTEP message
functions is the generation of portable object (*.po) files and message object
(*.mo) files to replace NEXTSTEP *.string files.

Supporting Internationalization of Your Application 29

5

To use the OpenStep on Solaris messaging scheme, you need to:

1. Wrap your internationalized messages with NSLocalizedString
functions.

2. Run the genstrings program on your source code to extract your
messages and create your portable object (*.po) files.
In OpenStep, genstrings supports the Solaris gettext functions. (To
display the contents of your files, you can run the cat program.)

3. Edit your .po files to include your translated message.
To display the contents of your edited files, you can re-run the cat program.

% cat myprog.m

#include <Foundation/NSBundle.h>
main()
{

NSString * myString1 = NSLocalizedString(@”How are you!”,
@”How are you comment”);

NSString * myString2= NSLocalizedStringFromTable(@”Hello
World!”, @”MyTable”, @”Hello comment”);

}

% genstrings myprog.m // Creates a MyTable.po and a
 Localizable.po file.

% cat MyTable.po
Hello comment
msgid “Hello World!”
msgstr

% cat Localizable.po
How are you comment
msgid “How are you!”
msgstr

30 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

5

4. Run the msgfmt (message format) program on your *.po files to create
message object (*.mo) files.

5. Place the *.mo files in the <lang>/LC_MESSAGES directory.

Note – If the current locale is “C,” which indicates the default locale in the
Solaris naming conventions, gettext simply returns the message string that
was passed.

% cat MyTable.po
Hello comment
msgid “Hello World!”
msgstr “<translated “Hello World!>”

% cat Localizable.po
How are you comment
msgid “How are you!”
msgstr “<translated “How are you!>”

% msgfmt MyTable.po
% msgfmt Localizable.po

Sample OpenStep Directory Structure

myprog.app

fr.lproj fr

 *.nib LC_MESSAGES

 *.mo

31

Performing the Porting Process 6

To convert your existing NEXTSTEP applications to OpenStep, you need to
perform several conversion processes. Specifically, you need to:

• Translate your PB.project and make files into a format acceptable to
OpenStep.

• Convert the Mach operating system features to Solaris.

• Convert the Objective C source language to Objective C++.

• Convert the NEXTSTEP interface to OpenStep.

This chapter describes how to accomplish these porting processes.

Translating Your Project and Make Files
When porting to OpenStep, you need to convert your application’s
PB.project and make files to an OpenStep compatible format. To accomplish
this, run the ProjectBuilder on the project to be converted. You should perform
this on a new copy of the project.

ProjectBuilder recognizes a NEXTSTEP project and asks you to confirm that
you want to convert it. Reply “yes” to allow ProjectBuilder to convert all the
PB.project and make files in your project to the new format. ProjectBuilder
however, does not convert Makefile.preamble and Makefile.postamble
files. If your project contains any of these files, you must manually convert
them according to the guidelines contained in
/usr/openstep/Developer/Makefiles/Makefile.preamble

32 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

6

For detailed information on the ProjectBuilder, refer to the manual, OpenStep
Development Tools.

Converting Mach-Specific Features to Solaris
You will get compilation error messages when porting to OpenStep if your
project contains Mach operating system specific features. To resolve these
errors, you need to manually convert these features to Solaris operating system
equivalents.

For information on resolving Mach and Solaris operating system differences,
see Chapter 3, “Resolving Operating System Differences” in this paper.

Converting Objective C to Objective C++
You need to handle compilation errors that occur as a result of language
differences between NEXTSTEP’s use of Objective C and OpenStep’s use of
Objective C++.

The most common errors are the use of C++ keywords such as new and class
and type mismatches caused by missing casts. Type mismatches occur because
C++ is a more strongly typed language than C.

For information on environment, compiler, and language differences between
Objective C and Objective C++, see Chapter 4, “Handling Environment,
Compiler, and Language Differences” in this paper.

Converting the NEXTSTEP Interface to OpenStep
You need to convert NEXTSTEP interface elements to OpenStep equivalents.
Elements you need to address are:

• Include file names

• Macro names

• Type names such as type definition, structure, union, and enumeration
names

• Global function names

• Global variable names

Performing the Porting Process 33

6

• Class names

• Method names

• Instance variable names

For most interface elements, there is a simple one-to-one mapping of an NX
(NEXTSTEP) name to a corresponding NS (OpenStep) name. In other cases,
some amount of recoding is necessary.

To assist you in interface conversion, OpenStep provides you with tools that
are located in /usr/openstep/Developer/ConversionTools/bin . Put
this directory name in your PATH environment variable.

These tools use a conversion database that resides in the directory
/usr/openstep/Developer/ConversionTools/appkitdb . This is a
normal ASCII file that contains OpenStep equivalents for NEXTSTEP
interfaces. If you discover a missing conversion, you can add a conversion to a
copy of appkitdb to make it available for future use. To accomplish this, read
the notes contained in appkitdb .

Detailed information on conversion tools is provided in “Working with
Conversion Tools” in this chapter. For information on NEXTSTEP and
OpenStep interface differences, see Chapter 2, “Managing Interface
Differences” in this paper.

In addition to the primary interface elements, you may need to convert NeXT
Interface Builder (nib) files. Any nib files from releases prior to NEXTSTEP
3.x are unsupported by the OpenStep Interface Builder so you need to convert
these nib files to NEXTSTEP 3.x or 4.0 format. However, nib files from
NEXTSTEP 3.x are compatible with Sun's Openstep Application Kit and
Interface Builder.

Note – NEXTSTEP 3.3 and 4.0 releases use the system font
Helvetica12—OpenStep uses the system font LucidaSans12. As a result, your
3.3 and 4.0 nib files that contain buttons or other views may have clipped
labels in OpenStep. To correct this, you can use Interface Builder to adjust the
labels on your objects.

OpenStep’s Application Kit maps NEXTSTEP 3.x classes to appropriate 4.0
classes when it loads them. When the OpenStep Interface Builder loads a 3.x
nib file, it prompts the user to save the nib under a different name to allow
the user to prevent conversion to a 4.0 format.

34 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

6

Nib files from NeXT's prerelease 4.0 product may or may not be compatible
with the OpenStep Application Kit and Interface Builder. Prior to NeXT's P2,
nib files created in NeXT's 4.0 Interface Builder do not load in the OpenStep
Interface Builder. Other isolated incompatibilities may also occur in later
prereleases.

Nib files you created using NEXTSTEP 4.0 that contain instances of classes
defined in OpenStep, are compatible with the OpenStep Interface Builder and
Application Kit. In addition, the OpenStep Application Kit and Interface
Builder support the NSTableView class and its associated classes,
NSFormatter and its subclasses, and the SoundView , SoundMeter , and
Sound classes. There is also partial support for the NSImageView class.

The builtin classes offered on the nib file window Classes Tab in the OpenStep
Interface Builder are part of the Openstep specification or are compatibly
exchangeable with NEXTSTEP 4.0. You should not encounter any nib
incompatibilities if you confine creation of additional objects in OpenStep’s
Interface Builder to

• the Openstep objects in the Classes tab.

• objects of classes you define in Interface Builder and supply code for.

• objects of headers that you parse in and supply code from libraries for.

Your code and libraries are available on NEXTSTEP for those classes you
define or parse in the OpenStep Interface Builder.

Use of the IDL extension to create CORBA objects in the OpenStep Interface
Builder results in incompatible objects being added to nib files. If you are
concerned about compatibility, you should avoid the IDL extension and the use
of sound in your OpenStep Interface Builder interfaces.

If you want to use NSImageView objects, you should drag an NSCustomView
from the Views palette in Interface Builder and use the attributes inspector to
customize it to NSImageView . The NSImageView objects in nib files that you
create in NEXTSTEP 4.0 appear in the OpenStep Interface Builder. However,
you can only resize and reposition these objects—there is no inspector
available to change their attributes.

Openstep implements the NSText object as the NSCStringText subclass. In
NEXTSTEP 4.0, the NSTextView subclass of NSText implements the NSText
object. For simple uses of text objects, you should program to the NSText
superclass interface which functions the same on both platforms. For more

Performing the Porting Process 35

6

sophisticated uses of text, you can program to the appropriate subclass
interface by using a runtime check to determine which class implements the
text object.

Working with Conversion Tools
OpenStep provides you with several tools to assist you in the conversion
process. These tools perform many simple conversions such as changing a
NEXTSTEP construct to its OpenStep equivalent.

The conversion tools don’t perform complicated conversions. For example,
after a tool completes its conversion process, you may still have several
remaining compilation errors. The remaining conversions can be performed at
a rate of approximately 1,000 to 3,000 lines per day. For example, a 10,000 line
application may take approximately three to ten days to produce a clean
compile.

OpenStep conversion tools include:

• cvtCC , which is an error correcting compiler

• cvtmake , which performs a standard make using cvtCC to compile .m files

• cvtstand , which performs conversions on NEXTSTEP usages that do not
cause compiler errors

• cvtextract , which extracts messages from cvtCC and cvtstand log files

• cvtquery , which is an interactive program for querying the conversion
database

• cvtre , which is a file that performs sed -like regular expression
replacements

The conversion tools use the appkitdb database by default. You can override
this by using the -db option. You can also specify one or more auxiliary
databases using +db options.

The cvtCC Conversion Tool

The cvtCC conversion tool is essentially an error-correcting compiler. You call
it with the same options that you specify for CC, except that you can only
specify the name of a single file instead of a list of files to compile. The cvtCC
conversion tool takes these options:

36 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

6

cvtCC [-db database] [+db aux-database] [-v] [-CC ccName] CC-options

The cvtCC compiles a file using compiler CC which it acquires from your
PATH environment variable. You can use the -CC option to override this
compiler.

After compilation is complete, cvtCC examines the error listing for include
files that cannot be opened. For each file, cvtCC looks up the include file name
in the conversion database. If located, cvtCC converts the source code to use
the NS equivalent include file. It then repeats compilation and reexamines the
error listing. If, during compilation, there are remaining include file
discrepancies, cvtCC prints a message to standard out and quits.

When a compilation contains no missing include files, cvtCC examines the
error listing and, using the conversion database, converts all NX names that the
compiler targets to NS names. It recompiles the file and examines the error
listing until all conversions are complete.

If cvtCC needs to fix a read-only file, it attempts to edit it using sccs . If this
fails, the file is not modified. Instead, a modified version of the file is produced
in a file with the same name and a .new suffix.

The cvtCC conversion tool produces output on standard out that contains the
conversion it used to fix each error message and the conversion(s) that apply to
each error message that it could not fix.

The cvtCC can correct errors that involve a reference to an unknown name that
is actually an old NX name. This type of error occurs because the compiler uses
new NS include files. Old NX names aren’t defined in these files. The cvtCC
cannot correct any syntax errors or type mismatch errors.

When cvtCC identifies a naming problem, it might be unable to resolve it due
to these circumstances:

• The database doesn’t specify a corresponding NS name. This might occur
because the database is incomplete, or because the conversion for the NX
name only contains a comment that indicates some manual conversion is
necessary.

• The database contains multiple conversions of the NX name and cvtCC isn’t
able to determine which to use.

Performing the Porting Process 37

6

• The database contains a unique conversion of the NX name but cvtCC is
unable to apply it. This typically happens with method names in which the
NS method name contains a different number of formal parameters than the
NX method name.

The cvtmake Conversion Tool

The cvtmake conversion tool is a script that performs a standard make but
uses cvtCC to compile .m files. It accomplishes this by:

setenv CCC=/user/openstep/Developer/ConversionTools/bin/cvtCC

setenv OBJCC=/usr/openstep/Developer/ConversionTools/bin/cvtCC

make -e

The cvtmake conversion tool takes these options:

cvtmake [-db dbname] [+db aux-database] [-CC CCname] make-options

The cvtstand Conversion Tool

The cvtCC conversion tool only performs conversions on NX names that the
compiler has flagged with errors and warning messages. The cvtstand
conversion tool converts NX names that do not cause compiler error and
warning messages. Currently, cvtstand converts:

• Class names in @class declarations
• Function names declared in extern function declarations
• Method names in @selector statements

The cvtstand conversion tool takes these options:

cvtstand [-db database] [+db aux-database] [-Idirname ...] fn1,
fn2, ...

The cvtstand conversion tool does not convert method declarations although
it does output notes regarding manual conversions that you need to perform.
This tool can output more succinct messages about method conversions if it
knows the inheritance of the class to which a method belongs. It is aware of the
inheritance of all the Application Kit and Foundation Kit classes.

To locate the inheritance of user classes, cvtstand looks at the @interface
declarations in all the .h files in the current directory. If your application uses
other .h files, then you can name their directories with -I options so that
cvtstand can locate them. For example, if all your .h files are in

38 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

6

gus/include, you should run cvtstand *.h in that directory location. If
all your .m files are in gus/src , you should run cvtstand -I../include
*.m in that directory location.

The cvtstand conversion tool handles read-only files the same way as that
cvtCC does. The cvtstand produces messages that describe the conversions
that could and could not be performed on stdout .

The cvtextract Conversion Tool

You can use the cvtextract conversion tool to extract messages from the log
files produced by cvtCC and cvtstand . The cvtCC and cvtstand log files
contain messages that describe the conversions that could and could not be
performed on standard out.

The cvtextract conversion tool reads the log file from standard in and writes
to standard out.

If you prefer, you can simply view cvtCC and cvtstand messages in standard
out.

The cvtquery Conversion Tool

The cvtquery conversion tool is an interactive program that you can use to
query the conversion database. You enter an NX name and, if applicable, it
responds with its corresponding NS name.

The cvtquery conversion tool takes these options:

cvtquery [-v] [-dump] [-help] [-db fileName] [+db aux-database]

By default, cvtquery displays conversions in an abbreviated form. Pressing
CR without entering a name repeats the previous query in verbose mode which
provides more detailed information.

The cvtre Conversion Tool

The cvtre conversion tool performs sed -like regular expression replacements.
It performs these replacements on a list of file name options:

cvtre [-dryrun] [-i] -redb regexps-file fn1, fn2, ...

Performing the Porting Process 39

6

You can use the cvtre to perform conversions that cannot be performed by
cvtCC . For example, you must convert the message:

[gus getCellSize: &fred];

to:

fred = [gus getCellSize];

Several conversions are located for you in the regexp file in
/usr/openstep/Developer/ConversionTools/redb .

Alternatively, if you are an emacs user, you can use the emacs functions
defined in

/usr/openstep/Developer/ConversionTools/emacs/openstep-port.el

Although the cvtre cannot perform conversions that span line boundaries,
emacs functions do. However, you can run cvtre on a list of files and, if
necessary, it automatically performs sccs edits on these files. Using emacs, it
is necessary for you to manually invoke functions on one file at a time.

Using the Emacs Editor
The OpenStep conversion tools produce messages in a format that is
compatible with the emacs compilation facility. For example, you can run
cvtstand by specifying a cvtstand command to M-x compile. This places
the messages from cvtstand into the compilation buffer which allows for
easy browsing.

When using xemacs, you can also colorize the error logs produced by CC and
the conversion tools. To accomplish this, add this to your .emacs file:

load-file "/usr/openstep/Developer/ConversionTools/emacs/cvt-font-
lock.el"

If you also use your .emacs file for emacs18, you should add this line to an
emacs19 only section. This automatically turns on colorization in the
compilation mode buffer. It also makes the same colorization available in shell
buffers.

You explicitly enable colorization to appear by using M-x font-lock-mode or by
selecting the Options.Syntax Highlighting.Colors menu item.

40 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

6

You can also use the compilation mode error browsing capabilities in shell
buffers and regular files. For example, you can use a shell command and save
output in a log file. To accomplish this line, add this to your .emacs file:

autoload 'compilation-mode "compile" "error browsing" t

Next, use M-x compilation-mode with the cursor in the desired buffer.

Note – Due to an implementation error, the error browser ignores the first two
lines in the buffer, so be sure to insert two blank lines at the beginning of the
buffer. In addition, once you switch a shell buffer to compilation mode, you
can no longer enter shell commands in it. To reinstate it as a shell buffer, use M-
x shell-mode.

Performing the Porting Process 41

6

If you don’t like the default colors that appear with colorization, you can
change them by:

• Redoing the assignment of regular expressions to different font-lock faces.
See compilation-font-lock-keywords in the cvt-font-lock.el file.

• Assigning different colors to the font-lock faces themselves. For example,
see the function use-my-colors in cvt-font-lock.el . These colors could
be enabled by adding to your .emacs file: add-hook 'font-lock-mode-
hook' use-my-colors . This changes the colors used in syntax
highlighting in all the buffers, not just in the compilation error logs.

Emacs users can also use the functions in:

/usr/openstep/Developer/ConversionTools/emacs/openstep-port.el

to perform many regexp type conversions that are unsupported by the
OpenStep conversion tools.

42 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

6

43

Porting a Simple Application 7

This chapter provides detailed instructions on porting a simple calculator
application from NEXTSTEP 3.3 to OpenStep using the porting tools available
with the OpenStep product.

This lab requires that you have access to a machine running NEXTSTEP with
the developer examples. Before you begin, you will need to copy the folder
/NextDeveloper/Examples/Appkit/CalculatorLab from a NEXTSTEP
machine to your machine running OpenStep on Solaris.

Converting Project Files
When porting to OpenStep, you need to convert your application’s
PB.project and make files to an OpenStep compatible format.

1. Convert the PB.project and make files.
Before you attempt to compile this project, you need to convert your project
and make files. When you open the project for the first time, ProjectBuilder
performs this conversion for you.

a. Launch ProjectBuilder.

b. Open the CalculatorLab PB.project file.
ProjectBuilder displays a panel that asks if you would like to save
backup copies of the old PB.project and make files. You should do this
especially if you are converting a large project file.

44 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

2. Remove the MinusPanel class from the project.
The MinusPanel class is no longer needed due to modifications in
OpenStep over the NEXTSTEP product. Prior to porting any application,
you should remove any classes that you know are obsolete.

3. Save the project.

4. Convert the nib file.
It is not necessary to convert your NEXTSTEP nib files because they are
supported in OpenStep. However, performing this process ensures a cleaner
conversion.

a. Delete the StringTable object from the nib file.
NXStringTable has no equivalent in the OpenStep classes. Localized
strings are now created with calls to the
NSLocalizedStringFromTable function. Since this application did
not make use of internationalization, you can simply replace calls to the
NXStringTable with the strings they are requesting. For information on
supporting internationalization, see Chapter 5, “Supporting
Internationalization of Your Application” in this paper.

b. Change the class of the panel from MinusPanel to NSPanel .
Since you deleted the MinusPanel class from the project, you need to
make sure the nib file doesn’t reference it.

c. Save these changes to the nib file.

Converting Header Files
The first part of the source code conversion process is converting the interfaces
of the objects in your project. You use the cvtstand conversion tool to locate
discrepancies between your code and the OpenStep interfaces. This tool does
not actually fix errors for you. When cvtstand finds discrepancies, you need to
make the changes to both your .h and .m files. This is a good time to make
changes to the actual source code if the parameter or return types for the
method have changed.

Porting a Simple Application 45

7

1. Launch the xemacs editor.
While using the conversion tools, you can use xemacs as your editor. This
editor has an interface to the OpenStep conversion tools. When the
conversion tools locate complex conversions that they cannot perform
automatically, you can use xemacs to help you to locate the lines of code
that require a manual change.

a. Launch a shell window.

b. Type xemacs & at the prompt.
This editor launches with an empty buffer.

2. Run the cvtstand conversion tool.

a. Click the Compile button in the xemacs tool bar.
This editor brings up a panel that asks if you want to edit the command
it uses to compile.

b. Click on the Edit command button on the panel

c. Type cvtstand *.h in the minibuffer at the bottom of the window.

d. Press the return key.
This editor splits the window into two sections—one window displays
compilation errors and the other allows you to work on source code. You
should see something like:

*** Fix the following method declarations/@selectors by hand
"SimpleCalc.h", line 83: - appDidInit:sender;
 Method belongs to class: SimpleCalc:NSObject
 -- from> file=appkit/Application.h, source= '- appDidInit:sender;'
 -- to> file=NSApplication.h, source= ' -
(void)applicationDidFinishLaunching:(NSNotification *)notification;

"SimpleCalc.h", line 88: - windowWillClose:sender;
 Method belongs to class: SimpleCalc:NSObject
 -- *** Method names are the same; check param/return types
 -- from> file=appkit/Window.h, source= '- windowWillClose:sender;'
 -- to> file=AppKit/NSWindow.h, source= ' -
(void)windowWillClose:(NSNotification *)notification;'

46 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

3. Fix the errors that cvtstand locates.
The cvtstand conversion tool finds two necessary conversions for the
delegate methods that are used by the SimpleCalc class. All delegate
methods in OpenStep work using the notification mechanism. The delegate
automatically receives all of the notification methods that it implements.

a. Convert the appDidInit method to the
applicationDidFinishLaunching method.
The applicationDidFinishLaunching method takes an
NSNotification object as the parameter and returns void .

i. Edit SimpleCalc.h to change the method name, parameter, and
return type.

ii. Edit SimpleCalc.m to reflect the changes you made in
SimpleCalc.h .

iii. Change the applicationDidFinishLaunching method so that it
does not return a value.

b. Convert the windowWillClose method’s parameter and return types.

i. Change the parameter and return value types.

ii. Change the source code to fix a looping bug.
The windowWillClose method now compiles correctly, but the
current version causes an infinite loop when the user either closes
the window or quits the application. Closing the window calls the
NSApplication terminate method, which attempts to close the
window again which calls the terminate method, and so on. You
can fix this bug by creating a static variable inside the method body
to track whether the terminate method has been called and to
prevent calling this method after it is first invoked. Your code
should appear similar to this:

Porting a Simple Application 47

7

4. Save the changes you made to SimpleCalc.h and SimpleCalc.m .

Converting Source Files
Now that you’ve completed the major changes to the class interfaces, you can
begin to convert the source code. The cvtmake conversion tool assists you
with this process. It performs simple conversions on the source code and flags
the more complex changes that you need to make by hand. Using cvtmake is
an iterative process. After you run cvtmake , you fix the errors it is unable to
correct, and then you run cvtmake again to locate more errors. Since cvtmake
makes changes to the source files, it is that you important reload files you have
open after cvtmake runs.

Note – The OpenStep conversion tools produce messages in a format that is
compatible with the emacs compilation facility. Although this tutorial
describes how to use emacs to simplify the conversion process, you can
perform these changes manually. For example, when this tutorial instructs you
to “Click the Compile button in the xemacs tool bar to run cvtmake ,” you can
simply run cvtmake , make the necessary changes by hand, and re-run
cvtmake until you have no remaining errors.

1. Run the cvtmake conversion tool.

a. Click the Compile button in the xemacs tool bar.
This editor brings up a panel that asks you if you want to edit the
command that it uses to compile.

b. Click on the Edit command button on the panel.

- (void)windowWillClose:(NSNotification *)notification
{

static int closing = 0;
if (!closing)
{

closing = 1;
[NSApp terminate:self];

}
}

48 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

c. Type cvtmake in the minibuffer at the bottom of the window.

d. Press the return key.
The compilation buffer displays the results of performing the cvtmake .
It displays the conversions that cvtmake was able to make, followed by
the conversions you must make by hand. For the parts you need to fix,
you should see something like:

2. Reload the SimpleCalc.m by selecting Reload from the xemacs File
menu.
You do this to see the changes performed by cvtmake .

Warning – If you do not reload your files after you run cvtmake , the file you
are working on will be out of synchronization with the file that cvtmake
modified on your storage device. This makes it necessary for you to reload the
source file each time you are finished running cvtmake .

3. Fix the error messages by deleting the imports for
<sys_s/NXStringTable.h> and <appkit/publicWraps.h> .
You can safely delete the imported NXStringTable class because it does
not exist under OpenStep. The publicWraps.h file is imported for the
NXBeep function. Under OpenStep, NSBeep is part of the Application Kit.

4. Save SimpleCalc.m .

5. Click the Compile button on the xemacs tool bar to run cvtmake again.

*** Could not fix these messages ***
"SimpleCalc.m", line 13: Error: Could not open include file
<sys_s/NXStringTable.h>.
"SimpleCalc.m", line 17: Error: Could not open include file
<appkit/publicWraps.h>.
 -- from> source= 'appkit/publicWraps.h'
 -- to> file=, source= <comment attached>
 // OPENSTEP - no longer needed

Porting a Simple Application 49

7

6. Convert the name of the SimpleCalc operator instance variable.
OpenStep uses an Objective C++ compiler and as such is sensitive to C++
keywords. The operator keyword makes the compiler expect that you are
creating an overloaded operator. You can fix this error by changing the
variable’s name. To accomplish this, you need to change the name of the
variable in the header file and in SimpleCalc.m .

Note – You can perform a search-and-replace operation in emacs by pressing
the Escape key and then the “%” key. Emacs prompts you for the string to
search for and the string to replace it with.

7. Save SimpleCalc.h and SimpleCalc.m .

8. Click the Compile button on the xemacs tool bar to run cvtmake again.

9. Fix the error:

"SimpleCalc.h", line 83: Error: Type name expected instead of
"NSNotification".

This application was written before NeXT supported precompiled headers
so it imports individual headers for each class it needs. You can fix this error
by importing <AppKit/AppKit.h> in SimpleCalc.h . You can then delete
the individual import lines for class header files in SimpleCalc.m .

10. Click the Compile button on the xemacs tool bar to run cvtmake again.

11. Fix the error:

"SimpleCalc.m", line 51: Warning (Anachronism): Formal argument
aString of type NSString* in call to NSActionCell::-
[setStringValue:](NSString*) is being passed char*.

In this error, a constant character pointer (const char *) is being passed
to the setStringValue method of an NSTextField . You can fix this by
using the precompiler shortcut to create an NSString by replacing ”” with
@”” . This creates an autoreleased NSString object that contains the text
between the quotes—in this case, a string with no characters.

50 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

12. Fix the error:

"SimpleCalc.m", line 70: Warning: Cannot find instance method
valueForStringKey: for class id.

Since this application does not use the internationalization features of the
NXStringTable , you can safely substitute calls to it with NSStrings that
contain the correct text. In this case, replace [NXStringTable
valueForKey:”decimalPointString”] with @”.” . You need to convert
this method, since you are now passing an NSString to the
appendToString method. For information on supporting
internationalization, see Chapter 5, “Supporting Internationalization of Your
Application” in this paper.

13. Convert the appendToString: method’s parameter type from const char
* to NSString * .

a. Delete the copyOfDisplay variable.

b. Change the next to last line in the method from:

[display setStringValue:strcat(copyOfDisplay, theDigit)];

to:

[display setStringValue:[[display stringValue]
stringByAppendingString:theDigit]]];

This fixes the two errors.

14. Fix the errors:

"SimpleCalc.m", line 156: Warning: Cannot find instance method
valueForStringKey: for class id.

and

"SimpleCalc.m", line 163: Warning: Cannot find instance method
valueForStringKey: for class id.

You can replace both of these calls to NXStringTable with @”0” .

15. Fix the error:

"SimpleCalc.m", line 207: Error: Formal argument charCode of type
NSString* in call to NSButton::-[setKeyEquivalent:](NSString*) is
being passed int.

The setKeyEquivalent method now takes an NSString object as the key
equivalent. You can use @”\003” to specify the Enter key.

Porting a Simple Application 51

7

16. Fix the errors:

"SimpleCalc.m", line 224: Warning: Cannot find instance method
loadNibSection:owner: for class id.

and

"SimpleCalc.m", line 233: Warning: Cannot find instance method
loadNibSection:owner: for class id.

In OpenStep, the job of loading nib files is performed by the NSBundle
class. Replace the two calls to the NXApp’s loadNibSection:owner with
a call to NSBundle ’s class method loadNibNamed:owner .

17. Save the changes to SimpleCalc.h and SimpleCalc.m .

18. Click the Compile button on the xemacs tool bar to run cvtmake again.
You should have no compile errors this time.

19. Complete the deep port by replacing character strings with NSString
objects.
Replace the use of character strings in the numberKeys method.

20. Fix SimpleCalc.m so that the numeric keypad can be used.
The buttons on the calculator have keyEquivalents set in the
SimpleCalc.nib file to the keys on the numeric keypad. In OpenStep,
keyEquivalents (by default) need to have the command key pressed
simultaneously in order to be recognized.

To fix this, set the default modifier key mask to 0 for each button. This can
be accomplished in the applicationDidFinishLaunching method. Note
that OpenStep changes the keyEquivalent for the Enter key to be "\r"
for the Sun keyboard.

52 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

Compiling Your Project
Now that you’ve completed the conversion processes, you are ready to compile
and debug the application. With more complex programs, you will probably
have many remaining compiler and run-time errors. At this point, the
calculator application should compile and run cleanly.

♦ Build and run the application from ProjectBuilder.

- (void) applicationDidFinishLaunching:
(NSNotification *)notification

{
/* Enter key cannot be set as key equivalent from Interface
/* Builder */
[enterKey setKeyEquivalent: @"\r"];
/* To use keypad keys without a modifier key */
NSArray *buttons = [[[enterKey window] contentView] subviews];
id elem;
for (int count = [buttons count] - 1; count >= 0; count --) {

elem = [buttons objectAtIndex: count];
if ([elem respondsToSelector:

@selector(setKeyEquivalentModifierMask:)]) {
[elem setKeyEquivalentModifierMask: 0];

}
}
[[display window] makeKeyAndOrderFront:self];
return self;

}

Porting a Simple Application 53

7

Ported Source Code

SimpleCalc.h
/*
 * SimpleCalc -- Randy Nelson, NeXT Computer, Inc.
 * Ported by Paradigm Research, Inc.
 *
 * A general class that directly supports a calculator interface
 * Created 8-8-90
 *
 * You may freely copy, distribute and reuse the code in this
 * example.
 *
 * Paradigm Research, Inc. disclaims any warranty of any kind,
 * expressed or implied, as to its appropriateness for any
 * particular use.
 */

#import <AppKit/AppKit.h>

@interface SimpleCalc:Object
{
 id infoPanel;
 id helpPanel;

 id display; /* a text object to show the output and input */

 id enterKey; /* outlet to set the key equivalents */

 id stringSet; /* the string external to the source */

 int theOperator;/* represents the current operator or zero */

 double accumulator;/* a buffer to hold the first number entered */

 BOOL numberHasADecimal,
 startingSecondNumber,
 treatingOperationKeyLikeEqualKey,
 noFirstNumber;/* flags that describe the calculator’s state */

}

54 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

- doInit;
/* initialize an instance of the class and its flags for start-up
 * also used by the clear all key
 */

- numberKeys:sender;
/* sent by any number key or the decimal point key in the interface
(0-9, .)
 * appends the character to display using appendToDisplay:
 * erases the previous number if startingSecondNumber
 */

- numberDirectFromDisplay:sender;
/* sent as the action of displayer,allows direct entry of numbers
 * startingSecondNumber gets YES
 */

- equalsKey:sender;
/* sent by the equals key in the interface (=)
 * at this point, accumulator holds the first number
 * operator holds an integer defined to an operation
 * displayer hold the second number
 * performs the operation and leaves the result in the dsplayer
 */

- operationKeys:sender;
/* sent by the operation keys in the interface (+, -, * and /)
 * sets the value of operation
 * acts like equals to chain a calculation when
 * treatingOperationKeyLikeEqualKey
 */

- clearKeys:sender;
/* sent by either clear key in the interface(clear, clear all)
 * clear—zeros the display—allows re-entering a number
 * clear all resets by calling init
 */

- decimal;
/* called by numberKeys when it finds the number is a decimal point
 * checks first if numberHasADecimal already
 * if not -- appendToDisplay: a decimal point
 */

Porting a Simple Application 55

7

- appendToDisplay:(NSString *)theDigit;
/* sent by objects wanting to append a digit to the number in the
 * displayer removes the leading zeros a zero value displayer has
 * unless there is a decimal point
 */

- (void)applicationDidFinishLaunching:(NSNotification
*)notification;
/* handles some key equivalent setting and orders the window front
 * should be application’s delegate to receive
 */

- (void)windowWillClose:(NSNotification *)notification;
/* quits application when window is closed
 * for example, application’s quit menu item can send performClose:
 * to window should be Window’s delegate to receive
 */

- infoPanel:sender;
- helpPanel:sender;
/* sent by the menu in interface
 * creates the panels as they are needed
 */
@end

SimpleCalc.m
/*
 * SimpleCalc -- Randy Nelson
 * Ported by Paradigm Research, Inc.
 *
 * A general class that directly supports a calculator interface
 * Created 8-8-90
 *
 * You may freely copy, distribute and reuse the code in this
 * example.
 *
 * Paradigm Research, Inc. disclaims any warranty of any kind,
 * expressed or implied, as to its appropriateness for any
 * particular use.
 *
 */

56 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

#import "SimpleCalc.h"

#define DECIMALPOINT 10
#define DIVIDE 20
#define MULTIPLY 21
#define SUBTRACT 22
#define ADD 23
#define CLEAR 31
#define CLEARALL 30

@implementation SimpleCalc
- init
{
 if (self = [super init])

[self doInit];

 return self;
}

- doInit
{
 accumulator = 0;
 theOperator = 0;
 numberHasADecimal = NO;
 startingSecondNumber = NO;
 treatingOperationKeyLikeEqualKey = NO;
 noFirstNumber = YES;
 return self;
}

- numberKeys:sender
{
 int digit = [sender selectedTag];

 noFirstNumber = NO;

 /* clear the display in order to begin the second number */
 if(startingSecondNumber == YES)

{
[display setStringValue:@""];
startingSecondNumber = NO;

 }

Porting a Simple Application 57

7

 if(digit == DECIMALPOINT)
{

[self decimal];
return self;

 }

 [self appendToDisplay:[NSString stringWithFormat:@"%d", digit]];
 return self;
}

- decimal
{
 if(numberHasADecimal == YES)

{
NSBeep();
return self;

 }

 [self appendToDisplay:@"."];
 numberHasADecimal = YES;
 return self;
}

- operationKeys:sender
{
 //do nothing if noFirstNumber
 if(noFirstNumber == YES)

{
NSBeep();
return self;

 }

 /* if there's an operation and a first and second number
 * function as though the equal key has been pressed
 */
 if((treatingOperationKeyLikeEqualKey == YES) &&
 (startingSecondNumber == NO))

{
[self equalsKey:self];

 }

58 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

 theOperator = [sender selectedTag];
 switch(theOperator)

{
case DIVIDE: case MULTIPLY: case SUBTRACT: case ADD:
{

accumulator = [display doubleValue];
numberHasADecimal = NO;
startingSecondNumber = YES;
treatingOperationKeyLikeEqualKey = YES;
break;

}
default:
{
return self;
}

 }

 return self;
}

- equalsKey:sender
{
 /* do nothing if noFirstNumber */
 if(noFirstNumber == YES){

 NSBeep();
 return self;

 }
 switch(theOperator){

case DIVIDE:{
 if([display doubleValue] == 0){

//can't divide by zero
NSBeep();
return self;

 }
 [display setDoubleValue:(accumulator / [display

doubleValue])];
 break;
}
case MULTIPLY:
{
 [display setDoubleValue:(accumulator * [display

doubleValue])];
 break;
}

Porting a Simple Application 59

7

case SUBTRACT:
{
 [display setDoubleValue:(accumulator - [display

doubleValue])];
 break;
}
case ADD:
{
 [display setDoubleValue:(accumulator + [display

doubleValue])];
 break;
}
default:{

return self;
}

 }
 /* just like doInit
 * but startingSecondNumber gets YES
 * and noFirstNumber continues to be NO (there is a first number)
 */
 theOperator = 0;
 accumulator = 0;
 numberHasADecimal = NO;
 startingSecondNumber = YES;
 treatingOperationKeyLikeEqualKey = NO;
 return self;
}

- clearKeys:sender
{
 switch([sender selectedTag])

{
case CLEAR:
{

[display setStringValue:@"0"];
numberHasADecimal = NO;
startingSecondNumber = YES;
break;

}
case CLEARALL:
{

[display setStringValue:@"0"];
[self doInit];
 break;

}

60 Porting NEXTSTEP 3.2/3.3 Applications to OpenStep on Solaris—February 1996

7

default:
{

break;
}

 }
 return self;
}

- appendToDisplay:(NSString *)theDigit
{
 /* if the display's current value is zero */
 if([display doubleValue] == 0){

/* and the zero doesn't have a decimal point */
if(numberHasADecimal == NO){

 /* replace the display with the digit passed */
 [display setStringValue:theDigit];
 return self;
}

 }
 /* otherwise, append the digit passed
 * to the digits already in the display
 */
 [display setStringValue:[[display stringValue]
stringByAppendingString:theDigit]];

 return self;
}

- numberDirectFromDisplay:sender
{
 noFirstNumber = NO;
 startingSecondNumber = YES;
 return self;
}

- (void)applicationDidFinishLaunching:(NSNotification
*)notification
{
 /* enter key can't be set as key equivalent from Interface

 * Builder */
 [enterKey setKeyEquivalent:@"\003"];
 [[display window] makeKeyAndOrderFront:self];
}

Porting a Simple Application 61

7

- (void)windowWillClose:(NSNotification *)notification
{

static int closing = 0;
if (!closing)
{

closing = 1;
[NSApp terminate:self];

}
}

- infoPanel:sender
{
 if(infoPanel == nil){

[NSBundle loadNibNamed:@"Info.nib" owner:self];
 }
 [infoPanel orderFront:sender];
 return self;
}

- helpPanel:sender
{
 if(helpPanel == nil){

[NSBundle loadNibNamed:@"Help.nib" owner:self];
 }
 [helpPanel orderFront:sender];
 return self;

}
@end

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par un ou
plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et exclusivement
licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc. PostScript et Display PostScript
sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

